

#Q. Let $|z_i| = 1 \forall i = 1, 2, 3$ satisfying $|\overline{z_1}z_2 + \overline{z_2}z_3 + \overline{z_3}z_1|^2 = a + b\sqrt{2}$, where a, b are rational numbers such that $arg(z_1) = \frac{\pi}{4}$, $arg(z_2) = 0$ and $arg(z_3) = -\frac{\pi}{4}$, then ordered pair (a, b) is

Ans. (C)

#Q. Let $g(x) = 3f\left(\frac{x}{3}\right) + f(3-x) \forall x \in (0,3)$ and $f''(x) > 0 \forall x \in (0,3)$, then g(x) decreases in interval $(0, \alpha)$ then α is

Ans. (C)

#Q. Let $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$ and the projection vector of \vec{b} on $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ is \vec{c} . If $|\vec{a} + \vec{c}| = 7$, then the area of the parallelogram formed by vectors \vec{b} and \vec{c} is (in square units)

#Q. Let the parabola $y = x^2 + Px - 3$ cuts the coordinate axes at P, Q and R. A circle with centre (-1, -1) passes through P, Q and R, then the area of triangle PQR is (in square units)

#Q. If the circle $(x - 2\sqrt{3})^2 + y^2 = 12$ and parabola $y^2 = 2\sqrt{3}x$ intersects at P, Q and R. Then the area of triangle PQR is

Ans. (B)

#Q. If $8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + p^2) + \dots \infty$ then the value of p is

Ans. (A)

#Q. The shortest distance between the lines
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{4}$$
 and $\frac{x+2}{7} = \frac{y-2}{8} = \frac{z+1}{2}$

Ans. (B)

#Q. Let f(x) be a real differentiable function such that f(0)=1 and f(x + y) = f(x)f'(y) + f(y)f'(x) for all $x, y \in R$. Then $\sum_{n=1}^{100} log_e f(n) =$

Ans. (A)

#Q. If $f(x) = 16(sec^{-1}x)^2 + (cosec^{-1}x)^2$. Then the maximum and minimum value of f(x) is respectively

Ans. (B)

#Q. If $\frac{dx}{dy} + \frac{x}{y^2} = \frac{1}{y^3}$ and x(1) = 1. Then x $\left(\frac{1}{2}\right)$ is equal to

Ans. (B)

#Q. Coefficient of x^{2012} in the expansion of $(1 - x)^{2008} (1 + x + x^2)^{2007}$

Ans. (A)

#Q. If $A = \{1, 2, 3, ..., 10\}$ and $B = \{\frac{m}{n}, m, n \in A, m < n \text{ and gcd of } (m, n) = 1\}$. Then number of elements in set B is

Ans. (B)

#Q. A 5 Letter word is to be made using any 5 distinct alphabets such that middle alphabet is M and Letter Should be in increasing order.

Ans. (A)

C

#Q. In a bag there are 6 white and 4 black balls two balls are drawn at random without replacement then the probability that both ball are white is

Ans. (B)

#Q. If A be a 3×3 square matrix such that det (A)= -2. If det $(3 adj(-6 adj(3A))) = 2^n \times 3^m$, where m $\ge n$, then 4m +2n is equal to

B

С

D

Ans. (104)

#Q. $e^{5(Inx)^2+3} = x^8$ Product of all real values of x ?

Ans. (A)

#Q. $\sum_{r=0}^{5} \frac{11_{c_{2r-1}}}{2r+2} = ?$

Ans. (A)

#Q. If A = {1,2,3}, find number of non empty equivalence relation on set A.

Ans. (B)

#Q. Given. $a_1, a_2, a_3 \dots$ are in increasing G.P. such that $a_1a_5 = 28$ and $a_2 + a_4 = 29$. Find a_6 ?

Ans. (784)

#Q. $f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$ $I_1 = \int_0^{\frac{n}{4}} f(x) dx$ $I_2 = \int_0^{\frac{\pi}{4}} x f(x) dx$ then find value of $7I_1 + 12I_2$. $\frac{1}{12}$ A В С D

Ans. (A)

#Q. Let the foci of the hyperbola be (1,14) and (1,-12). It passes through the point (1,6) then length of its latus rectum is ?

Ans. (A)

#Q. Let the triangle PQR be the image of the triangle with vertices (1,3), (3,1) (2,4) in the line x = 2y = 2. If the centroid of \triangle PQR is the point (α, β) then 15 $(\alpha - \beta)$ is equation

Ans. (22)