

PAPER SOLUTION

From Meerut

JAN | SHIFT

1 | 1s

Aryan Agarwal

Founder and CEO CVPS INTEGRATED STAR COURSE

2025

- **#Q.** The unusual difference in M.P. and B.P. of Oxygen and sulphur can be explained by:
 - A Electronegativity
 - **B** Atomicity
 - **C** Electron affinity
 - Ionisation energy

#Q. Identify the strongest oxidising agent among the following

- A Ce²⁺
- B Ce⁴⁺
- C Eu²⁺
- D Eu⁴⁺

#Q. Ribose present in DNA is:

- (A) It is a pentose sugar
- (C) α anomeric carbon is present
- (E) It is reducing sugar in free form Choose the correct statements:

- (B) Present in pyronose form
- (D) Present in D configuration

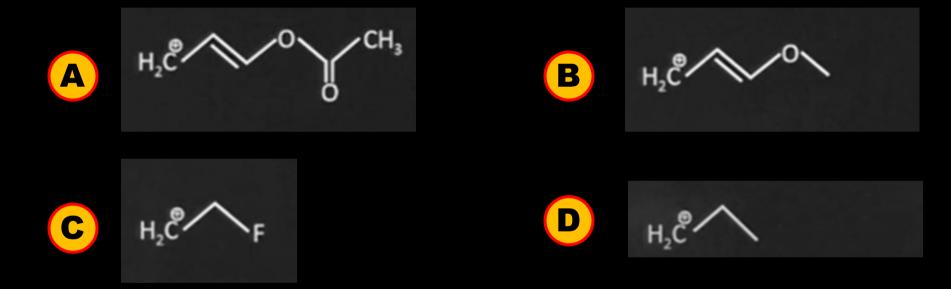
- A, C & E only
- B A, D & E only
- C A & E only
- D A, B, C, D & E

#Q. Given are two statements:

Statements I: Duma's method is used for detection of Nitrogen.

Statements II: In Duma's Method, Conc. H₂SO₄ is used.

- A Both statements I & statements II are correct.
- **B** Both statements I & statements II are incorrect.
- statements I is correct but statements II is incorrect.
- statements I is incorrect but statements II is correct.



#Q. If the K_{sp} of $Cr(OH)_3$ is 1.6×10^{-30} M⁴. The molar solubility of salt in water is 1.56×10^{-x} , then value of x is:

Ans. 8

#Q. Identify the most stable carbocation among the following-

#Q. Which of the following is most reactive towards nucleophilic addition reaction?

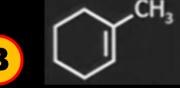
- A Para methyl benzaldehyde B Para–nitro benzaldehyde
- C Acetophenone D Benzaldehyde

- #Q. In H₂O, NH₃ and CH₄
 - (A) All central atoms are sp³ hybridised
 - (B) Order of dipole moment is $CH_4 < NH_3 < H_2O$
 - (C) NH₃, in H₂O is basic in nature, NH3 and H₂O are Bronsted–Lowry acid and based respectively.
 - (D) Bond angle of H_2O , NH_3 and CH_4 respectively are 104.5°, 107°, and 109.5°.
 - A and B only

B A, B and C only

C A, B and D only

D A, B, C and D



#Q. Which of the following is most reactive towards aq. HBr?

Ans. (A)

#Q. At the freezing point of water, process is non spontaneous, at boiling point it becomes spontaneous (Temperature varies linearly with pressure). The correct options is:

(NCERT Thermodynamics Page No – 162, class – XI Part – 1)

$$\Delta \mathbf{H} = +\mathbf{ve}$$

$$\Delta \mathbf{S} = +\mathbf{ve}$$

$$\begin{array}{c}
\Delta \mathbf{H} = +\mathbf{v}\mathbf{e} \\
\Delta \mathbf{S} = -\mathbf{v}\mathbf{e}
\end{array}$$

Ans. (A)

#Q.
$$Fe^{2+} + Ag^{+} \longrightarrow Fe^{3+} + Ag; E_{net}^{o}$$
?

$$Ag^+ + e^- \longrightarrow Ag; E^o = x$$

$$Fe^{2+} + 2e^{-} \longrightarrow Fe; E^{o} = y$$

$$Fe^{3+} + 3e^{-} \longrightarrow Fe; E^{o} = z$$

The value of $E_{net}^{o} = ?$

- \bigcirc y 2x

Ans. (D)

- **#Q.** In the industrial preparation of KMnO₄, the oxidative fusion of pyrolusite ore is done with an alkali, which first produces—
 - A K₂MnO₆
 - B K₂MnO₄
 - C KMnO₄
 - □ K₂MnO₃

#Q. Consider the given reactions and choose proper solvent.

Statement I:
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - C$$

Statement II: $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{R_3N} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - R$

- A Statement–I Polar protic, Statement–II polar aprotic
- B Statement–I Polar aprotic, Statement–II polar protic
- Statement–I Polar aprotic, Statement–II polar aprotic
- Statement–I Polar protic, Statement–II polar protic

#Q. 2.32 \times 10³ kg of Fe $_3$ O $_4$ reacts with 2.8 \times 10² kg of CO according to the following reaction:

 $Fe_3O_4 + CO \longrightarrow CO_2 + Fe$

If x kg of Fe is formed. Find the value of x?

Ans. 420

#Q. When x g of Benzoic acid reacts with NaHCO₃, 11.2 L of CO₂ is released at 273 K and 1 atm pressure, calculate mass of benzoic acid in gram?

Ans. 61

Find product of following sequence of reaction.

$$CH_3 - C = CH \xrightarrow{(i) Hg^{*2}, H_3O^+}$$

$$(ii) HCN$$

$$(iii) H_2/Pd$$

#Q. How many of the following cation shows characteristic coloured ppt, with $K_4[Fe(CN)_6]$?

Cu²⁺, Ca²⁺, Ba²⁺, Fe³⁺, Zn²⁺, Mg²⁺, Mn²⁺

Ans. 3

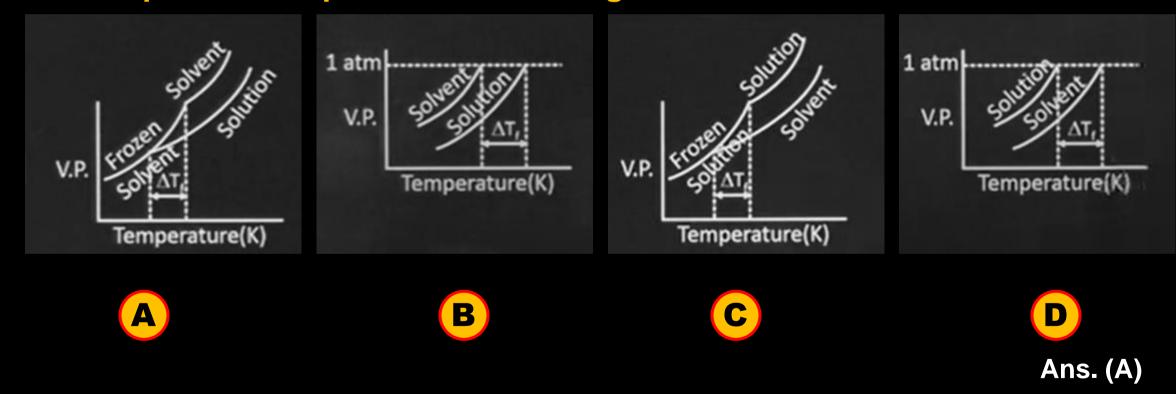
#Q. Consider the following reaction of a complex compound.

```
CoCl_3.5NH_3 \xrightarrow{H_2O} Total 3 moles of ions
AgNO_3SoI^n
```

2 moles of AgCl precipitated The formula of complex is

(A) [Co(NH₃)₅Cl]Cl₂

 \square [Co(NH₃)₆]Cl₂

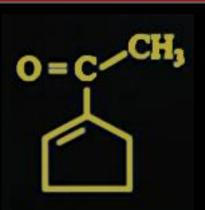

C [Co(NH₃)₃Cl₃].3NH₃

[Co(NH₃)₄Cl₂]Cl

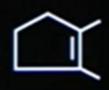
Ans. (A)

#Q. Consider the following plots of vapour pressure of a solution containing non-volatile solute versus temperature in K and choose the correct graph which represents depression in freezing of solvent.

#Q. Select the incorrect statements about the modern periodic table.


- A Physical and chemical properties of elements are based on their atomic weight
- B Physical and chemical properties of elements are based on their atomic number
- Non-metallic elements are lesser in number than metallic elements
- In periodic table, 18 groups are present

Ans. (A)


#Q.

x would be:

