

#Q. Consider the following reaction: $S(s) + \frac{3}{2}O_2(g) \longrightarrow SO_3(g) + 2x kJ$ $SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g) + y kJ$ calculate ΔH_r for the following reaction (kJ) $S(s) + O_2 \longrightarrow SO_2(g)$ -(x + y)A -(2x + y)B

c $x\sqrt{y}$

Y-2x

D

Ans. (D)

#Q. $t_{2g}^3 e_g^1$ configuration in a metal complex is possible for a complex which is:

- Strong field ligand; High spin complex
- **B** Weak field ligand; High spin complex
- **C** Strong field ligand; Low spin complex
- D
- Weak field ligand; Low spin complex

Ans. (B)

#Q. When ethylenediamine is added to aq. NiCl₂ solution, the sequence of colours will be—

- **Pale Blue** \rightarrow **Blue** \rightarrow **Green** \rightarrow **Violet**
- **B** Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green
- **C** Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green
- D
- **Green** \rightarrow **Pale Blue** \rightarrow **Blue** \rightarrow **Violet**

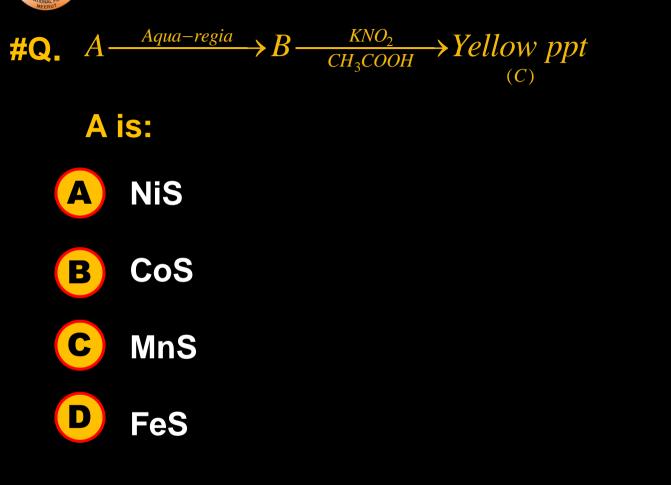
Ans. (D)

D

JEE MAIN 2025 DIVE PAPER DISCUSSION

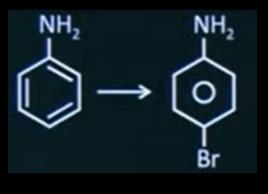
#Q. Statement I : Ionisation energy of Ge is more than Si. Statement II : Ionisation energy of Pb is more than Sn.

- **B** Both statement I & statement II are incorrect.
- **C** Statement I is correct but statement II is incorrect.
 - Statement I is incorrect but statement II is correct.


Ans. (D)

#Q. 0.25 gm of organic compound gives 0.15 gm of AgBr in Carius method. Percentage of bromine in organic sample is $___ \times 10^{-1}$. (Atomic mass : Ag = 108, Br = 80) (Nearest Integer)

Ans. 255



Ans. (B)

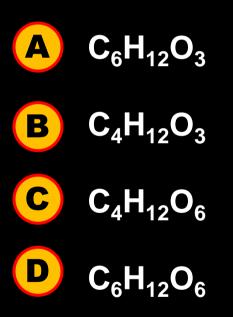
#Q. How can the following conversion be brought about?

- **A** Fe/Br₂, H₂O(Δ), H₂SO₄
- **B** Ac_2O , H_2SO_4 , Br_2 , NaOH
- $\mathbf{C} \quad \mathbf{Ac}_2\mathbf{O}, \mathbf{H}_2\mathbf{O}/\mathbf{H}^+$
- Ac₂O, Br₂/Fe, NaOH

Ans. (D)

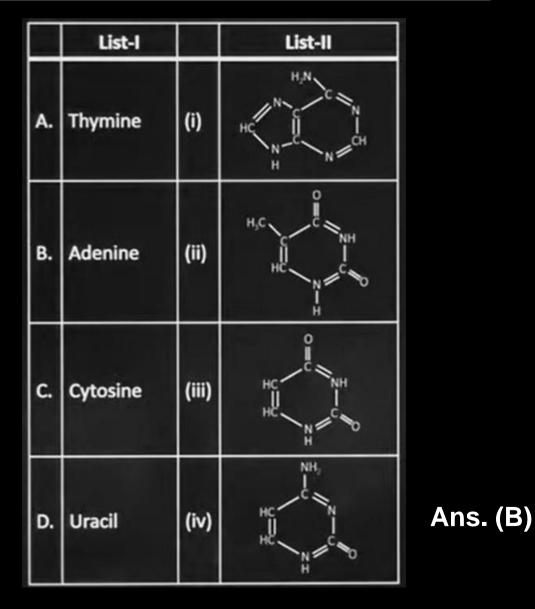
#Q. Match the column and select the correct option:

Column–IColumn–II(lonic species)(spin only magnetic moment (BM))A. Sc³⁺p. 2.84B. Ti²⁺q. 0C. V²⁺r. 5.92D. Mn²⁺s. 3.87

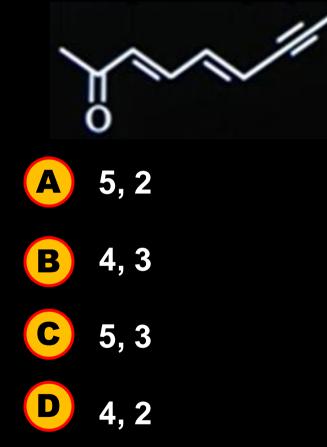

A
$$-p, B - q, C - r, D - s$$

C
$$A - q, B - p, C - r, D - s$$

Ans. (D)


#Q. In a compound contains 54.2% carbon, 9.2% of hydrogen and rest are oxygen. What is molecular formula of compound, if molecular mass is 132 g/mol?

Ans. (A)

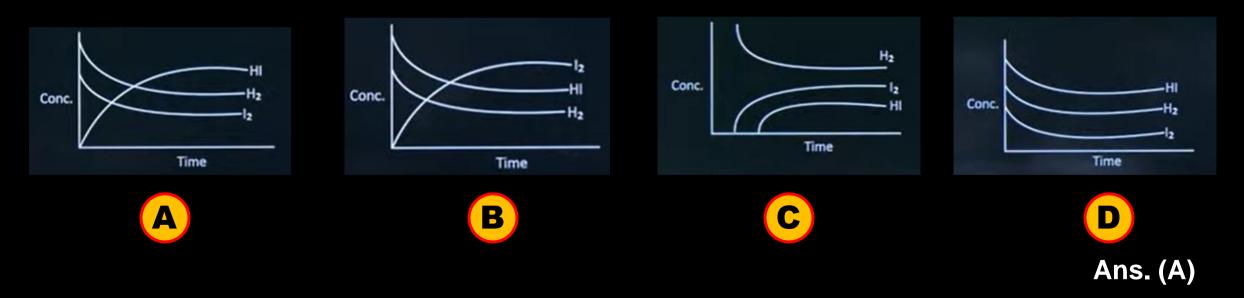


#Q. Match the following nitogenous bases present in List – I with their structures present in List – II.

#Q. Number of sp² and sp hybrid carbon atoms respectively in the compound.

Ans. (C)

#Q. How many stereoisomers of 5–Phenylpent–4–en–2ol are possible?


Ans. 4

#Q. Consider the following gaseous reaction.

 $H_2(g) + I_2(g) \longrightarrow 2HI$

The above reaction is started with 'a' moles of H_2 and 'b' moles of I_2 in a closed container at a certain temperature T(K) till the equilibrium is established. Which one of the following plots correctly describes the progress of reaction?

#Q. A hydrocarbon X which has molar mass 80g contains 90% carbon. Find degree of unsaturation in X.

Ans. 3

#Q. Let k_1 , k_2 and k_3 be the rate constant of reaction and $k = \sqrt{\frac{k_1 k_3}{k_2}}$. Then find

activation energy of overall reaction.

(*Given* : $E_{a_1} = 10 \text{ kJ/mol}, E_{a_2} = 30 \text{ kJ/mol}, E_{a_3} = 60 \text{ kJ/mol}$)

Ans. 20

#Q. The successive ionisation energy (I.E.) of an element 'X' is given. I.E₁ I.E₂ I.E₃ I.E₄ I.E₅ $X \rightarrow 500 \quad 600 \quad 2000 \quad 2200 \quad 2600$ Data given in KJ/mol. Find out the group number of element X.

Ans. (C)

#Q. Statement I : Oxygen–Oxygen bond length in O_3 is larger than O_2 . Statement II : O – O bond order in O_3 is 1.5 and O – O bond order in O_2 is 2.

Both statement I & statement II are correct.

Both statement I & statement II are incorrect.

Statement I is incorrect but statement II is correct.

Ans. (A)

#Q. A solution is prepared by mixing MX_2 (normal molar mass = 164) into aq. Solution. Abnormal molar mass is 65.4 percentage of ionization of MX_2 is:

Ans. 75%

#Q. Which of the following is the strongest reducing agent:

 $E^o_{Cr^{3+}/Cr} = -0.76 V$ $E^{o}_{MnO_{4}^{-}/Mn^{2+}} = 1.57 V$ $E^{o}_{Cl_2/Cl^-} = 1.36 V$ $E^o_{Cr_2O_7^{2-}/Cr^{3+}} = 1.33 V$ A Cr **Cr³⁺** С

Ans. (A)

С

#Q. Statements with respect to 1st order reaction:

- A Both statement I & statement II are correct.
- **B** Both statement I & statement II are incorrect.
 - Statement I is correct but statement II is incorrect.
- Statement I is incorrect but statement II is correct.

Ans. (C)