

PAPER SOLUTION

From Meerut

2025

Aryan Agarwal

Founder and CEO CVPS INTEGRATED STAR COURSE

JAN | SHIFT

29 2nd

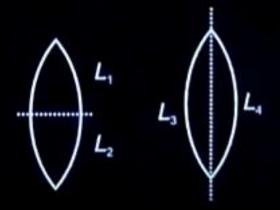
Aryan Agarwal

99.213%

98.977%iii

Disclaimer: This academic course is exclusively for day boarders only

Rank Predictor



Question Paper

#Q. An equiconvex lens is cut in two ways as shown. if the focal length of the parts are as mentioned in the diagram. Find $\frac{L_1}{L_3}$

- **A** 2
- **B** 4
- C ½
- 1/4

Ans. (C)

- **#Q.** A solenoid of radius 10 cm carrying current 0.29 A and having total 200 turns. If magnetic field inside solenoid is 2.9×10⁻⁴T. Find length of solenoid.
 - \triangle 6 π cm
 - 8π cm
 - **c** 4.5 cm
 - 16 cm

#Q. Three identical particles, each of mass m move under the influence of mutual attraction forces. Initially the are on the vertices of an equipotential triangle of side 'a' and have equal speed v directed towards the adjacent particles as shown, the net angular momentum about the centre just before collision is:

- <u>3mva</u> 2
- $\frac{2}{3}$ mva
- $\frac{\sqrt{3}}{2}$ mva
- $\frac{2}{\sqrt{3}} mva$

Ans. (C)

#Q. Match the physical quantities with their corresponding dimensions:

	Column-I		Column-II
(A)	Young's modulus	(i)	[AL ²]
(B)	Magnetic moment	(ii)	[ML ² T- ² A- ¹]
(C)	Magnetic flux	(iii)	[AL-1]
(D)	Magnetic Intensity	(iv)	[ML-1T-2]

- A-(iv), B-(i), C-(ii), D-(iii)
- B A-(iv), B-(ii), C-(i), D-(iii)
- C A-(iii), B-(i), C-(ii), D-(iv)
- D A-(iii), B-(ii), C-(i), D-(iv)

Ans. (A)

#Q. A physical quantity Q is gives as $Q = \frac{ad^4}{cd}$, if the percentage error is a, b, c and d are 2%, 1%, 2% and 1%, the error in Q will be

- **A** 5%
- **B** 15%
- **C** 9%
- D 2%

Ans. (C)

#Q. Assertion: On increasing the pressure, the volume decrease is more in an

isothermal process than in an adiabatic process.

Reason : Adiabatic process is given by PV^{γ} .

- A Assertion is correct and Reason is false
- Assertion is correct and Reason is correct
- C Assertion is false and Reason is correct
- Assertion is false and Reason is false.

#Q. Two planet A and B are revolving around a massive star such that $r_A = 2r_B$ and $m_A = 4\sqrt{3}$ m_B . Find ratio of angular momentum of planet B to planet A.

Ans. $4\sqrt{6}$

- #Q. A capacitor $C_1 = 6\mu F$, initially charged with a cell of emf 5 V is disconnected and connected to another capacitor $C_2 = 12 \mu F$ which is initially neutral. The charges on C_1 and C_2 after connection are :
 - Ομς, 30 μC
 - **Β** 10μc, 20 μC
 - **C** 20μc, 10 μC
 - **30μc, 0 μC**

#Q. Three particles of same mass are moving a shown. (all collisions are elastic)

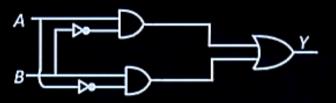
m m m

$$A \rightarrow 5 \text{ m/s}$$
 $B \rightarrow 2 \text{ m/s}$ $C \rightarrow 4 \text{ m/s}$

S₁: After all collisions velocities are 4 m/s, 2 m/s and 5 m/s.

S₂: Velocities are get interchanged in elastic collision of same mass.

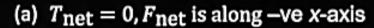
- A S₁: Correct, S₂: Correct
- S_1 : Incorrect, S_2 : Correct
- S₁: Incorrect, S₂: Incorrect
- \mathbb{S}_1 : Correct, \mathbb{S}_2 : Incorrect



#Q. An electromagnetic wave propagates in +x-direction. Then, electric field and magnetic field are directed along:

- A X, Y
- **B** Y, Z
- C Z, Y
- Y, X

#Q. The truth table for the logical circuit shown below is:


#Q. Two particles of same mass are performing SHM vertically with two different springs of spring constants K_1 and K_2 . If amplitude of both is same. Find ratio of the maximum speed of two particles.

- $\sqrt{\frac{K_1}{K_2}}$
- \mathbb{B} $\sqrt{\mathsf{K}_2\mathsf{K}_1}$
- $\sqrt{\frac{K_2}{K_1}}$
- $\sqrt{\frac{\mathbf{K}_1 + \mathbf{K}_2}{\mathbf{K}_1 + \mathbf{K}_2}}$

Ans. (A)

#Q. A dipole is placed such that its axis is perpendicular to the infinite charged sheet. Select the correct options:

(b)
$$T_{\text{net}} = 0, U = \min$$

(c)
$$T_{net} = 0, F_{net} = 0$$

(d) T_{net} and U both are maximum

- (a), (b), (c) and (d)
- **B** (b) and (c)
- C (a) and (c)
- (b) and (d)

- #Q. A cup of coffee take a time 't' to cool from 90°C to 80°C in a surrounding of 20°C. If a similar cup of coffee is cooled from 80°C to 60°C in the same surrounding, it takes a time:
 - $\frac{13t}{5}$
 - $\begin{array}{c|c}
 \hline
 B & \frac{5t}{13}
 \end{array}$
 - $\frac{12t}{5}$
 - D 2t

Ans. (A)

#Q. For a certain mechanical system, the rate of acceleration $\frac{dm}{dt}$ is proportional to \sqrt{v} , where m is mass, t is time and v is velocity, then the power is proportional to $v^{n/2}$ where is n is _____.

Ans. (5)