

PAPER SOLUTION

From Meerut

2025

JAN

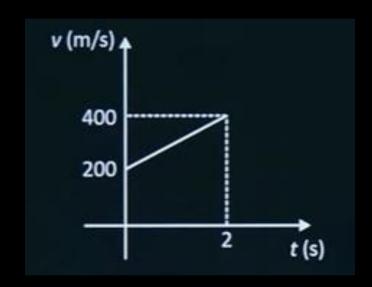
SHIFT

23

S

Aryan Agarwal

Founder and CEO CVPS INTEGRATED STAR COURSE



- #Q. Electric flux ϕ is related with linear charge density λ and surface charge density σ as as $\phi = \alpha\lambda + \beta\sigma$, where α and β are of appropriate dimensions of (β/α) is :
 - A Displacement
 - B Area
 - **C** Electric field
 - Velocity

#Q. For given velocity-time (v-t) graph, find distance travelled at 0.5 sec :

- A 125 m
- **B** 112.5
- C 137.m
- D 150m

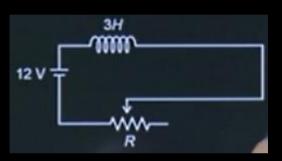
- #Q. The displacement of a particle as function of time is $x(t) = A(\sin) + B\cos^2(t) + ct^2 + D$. Find dimension of $\left[\frac{ABC}{D}\right]$
 - A L²
 - **B** L²T⁻²
 - C Lt⁻²
 - D L³T

#Q. The ratio of electric force to gravitational force between two particles having charge q_1 , q_2 and masses m_1 and m_2 respectively is (where symbols have their usual meanings)

$$\frac{4\pi\varepsilon_0 m_1 m_2 G}{q_1 q_2}$$

$$\frac{4\pi\varepsilon_{0}Gm_{1}m_{2}}{q_{1}q_{2}r^{4}}$$

$$\frac{q_1q_2r^4}{4\pi\varepsilon_0Gm_1m_2}$$


$$\frac{q_1q_2}{4\pi\varepsilon_0Gm_1m_2}$$

Ans. (D)

#Q. In given DC circuit, find current for R = 12 Ω in steady state.

- A 2 A
- **B** 1 A
- **G** 3 A
- D 4 A

- #Q. The key shown in the circuit is closed at t = 0. Choose the incorrect option regarding the conditions at t = 0
 - A Current in the circuit is zero
 - **B** Voltage across the capacitor is minimum
- C key

- Current in the circuit is maximum
- Voltage across resistance is maximum

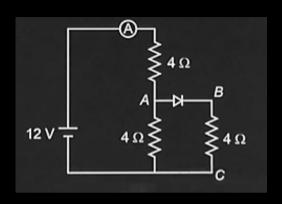
#Q. Match the column appropriately regarding thermodynamic process.

	Column I		Column II
(P)	When volume change is zero	(i)	$\Delta W = 0$
(Q)	When volume is constant	(ii)	ΔQ = 0
(R)	When no heat is exchanged	(iii)	Isobaric
(S)	Work done by the gas is equal to heat given to the gas	(iv)	Isothermal

- **A** P(iv), Q(iii), R(i), S(ii)
- **B** P(i), Q(iii), R(ii), S(iv)
- P(ii), Q(iii), R(iv), S(i0 Ans. (B)
- **P**(ii), Q(iii), R(i), S(iv)

#Q. Self-inductance depends on

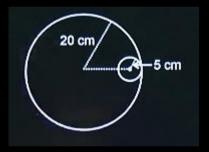
- A Only on geometry
- **B** Only on medium property
- **Geometry and medium property**
- Value of current through inductor


Ans. (C)

- #Q. Solid sphere of mass m rolls dawn rest to achieve speed v_1 an inclined plane of 30°. Sphere achieves speed v_2 an inclined plane of 45° when released from same height the $\frac{v_1^2}{v_2^2}$ is (Assume no slipping)
 - **A** 1

- **#Q.** For the circuit shown below
 - (A) Current in ammeter is 2 A
 - (B) Net resistance is 8 Ω
 - (C) Voltage across BC is 4 V
 - (D) Current the correct option.
 - Only A, B, C are correct
 - B Only A, C, D are correct
 - C Only A, D are correct
 - Only A, d are current

- #Q. Find the time period of a cube of side length 10 cm and mass 10 g oscillating in water. (Density of water = 10^3 kg/m³ and g = 10 m/s²)
 - $\frac{\pi}{25}$ second
 - $\frac{\pi}{50}$ second
 - $\frac{\pi}{100}$ second
 - $\frac{2\pi}{25}$ second


#Q. Adiabatic constant of a gas is $\frac{3}{2}$. If volume of gas initially at 0°C is reduced to one fourth of the original volume then new temperature is :

- **A** 0 K
- **B** 273 K
- C 546°C
- D 546 K

Ans. (D)

#Q. From a uniform circular disc of radius 20 cm a circular portion of radius 5 cm is removed. The shift in the position of centre of mass (in cm).

Ans. 1

#Q. A bullet of kinetic energy of 125 J strikes a lead block where temperature rises by 50°C. If specific heat of lead is 0.1 J/g°C then mass of lead block is (Assume half of kinetic energy of bullet is converted to heat) m gram then 2 m is:

Ans. 25

- #Q. There is force field $\vec{F} = x^3y^2\hat{i} + y^2\hat{j}$ in which a particle moves along the line x = y. Find work done by the force as the particle moves from (0, 0) to (2, 2)
 - A 173/15
 - **B** 136/15
 - C 139/17
 - D 171/17

#Q. In a radioactive decay, decay constant of element A_2 is 3 times that of element A_1 . Find the ratio of nuclei of element 1 to element 2 after one half life of A_2 .

(Assume initial number of nuclei are same for both elements)

- A 21/3
- **B** 2^{2/3}
- **G** 2
- D 2^{5/3} Ans. (B)

#Q. What is the dimensional formula of torsional constant K.

- **B** [ML⁴T⁻²]
- C [ML³T⁻²]
- [ML¹T⁻²]

- #Q. Statement –I: Hot water is less viscous than of cold water.

 Statement-II: Surface tension of soap solution is more than that of pure water.
 - A Statement-I is true and statement-II true
 - **B** Statement-I is true and statement-II false
 - Statement-I is false and statement-II false
 - Statement-I is false and statement-II true

- #Q. Two particles are located at equal distance from origin. The position vectors of those are represented by $\vec{A} = 2\hat{\imath} 3n\hat{\jmath} + 2\hat{k}$ and $\vec{B} = 2\hat{\imath} 2\hat{\jmath} + 4p\hat{k}$ respective. If both the vectors are at right angle to each other, the value of n^{-1} is.
 - **A** 1
 - **B** 3
 - **G** 2
 - **D** 4